MARGIN OF ERROR IN EXCEL - DEMO NOTES

Pollsters tend to report results with a "margin of error" that is assumed to be within 2-3\%. What does this number mean, and why is it assumed to be $2-3 \%$?

The margin of error is the range within which we expect to find our true population. Here is a good visualization from Wikipedia. Notice the relationship between sample size and margin of error:

Our equation for the margin of error is

$$
\text { Margin of error }=Z * \frac{\sigma}{\sqrt{n}}
$$

Where

$$
\begin{aligned}
& Z=\text { critical value } \\
& \sigma=\text { standard deviation } \\
& n=\text { sample size } \\
& \frac{\sigma}{\sqrt{n}}=\text { standard error }
\end{aligned}
$$

For the demonstration, fill out the below columns of the start worksheet using these formulas.

We will take a running mean and standard deviation of our samples, then compute the margin of error given using the above formula. This is for a two-tailed test at the 95% confidence interval.

Demo file: margin-of-error.xlsx

Column position	Column label	Formula
C	Sample mean	=AVERAGE (\$B\$7:B8)
D	Standard deviation	=STDEV.S(\$B\$7:C8)
E	Standard Error	=D8/SQRT(A8)
F	Critical value	=VLOOKUP(A8, critical_values, 2, TRUE)
G	Margin of error	=F8*E8
H	Margin of error as $\%$ of mean	$=$ G8/C8/2

By default, Column H will be plotted as a line chart expressing the margin of error as a percent of the mean:

This expresses the amount of sampling error there is in the sample mean being reflective of the population. The margin of error dips significantly around $n=30, n=60$ and $n=100$. These are empirical results but are generally good rules of thumb as "good, better, best" sample sizes for conducting inferential statistics.

